Characterization of ionic currents in human neural stem cells.

نویسندگان

  • Chae Gil Lim
  • Sung-Soo Kim
  • Haeyoung Suh-Kim
  • Young-Don Lee
  • Seung Cheol Ahn
چکیده

The profile of membrane currents was investigated in differentiated neuronal cells derived from human neural stem cells (hNSCs) that were obtained from aborted fetal cortex. Whole-cell voltage clamp recording revealed at least 4 different currents: a tetrodotoxin (TTX)-sensitive Na(+) current, a hyperpolarization-activated inward current, and A-type and delayed rectifier-type K(+) outward currents. Both types of K(+) outward currents were blocked by either 5 mM tetraethylammonium (TEA) or 5 mM 4-aminopyridine (4-AP). The hyperpolarization-activated current resembled the classical K(+) inward current in that it exhibited a voltage-dependent block in the presence of external Ba(2+) (30microM) or Cs(+) (3microM). However, the reversal potentials did not match well with the predicted K(+) equilibrium potentials, suggesting that it was not a classical K(+) inward rectifier current. The other Na(+) inward current resembled the classical Na(+) current observed in pharmacological studies. The expression of these channels may contribute to generation and repolarization of action potential and might be regarded as functional markers for hNSCs-derived neurons.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Immunohistological and electrophysiological characterization of Globose basal stem cells

Objective(s): In the past few decades, variety of foetal, embryonic and adult stem and progenitor cells have been tried with conflicting outcome for cell therapy of central nervous system injury and diseases. Cellular characteristics and functional plasticity of Globose basal stem cells (GBCs) residing in the olfactory epithelium of rat olfactory mucosa have not been studied in the past by the ...

متن کامل

Existence of a delayed rectifier K+ current in the membrane of human embryonic stem cel

Introduction: Human embryonic stem cells (hESCs) are pluripotent cells that can proliferate and differentiate to many cell types. Their electrophysiological properties have not yet been chracterzed. In this study, the passive properties (such as resting membrane potential, input resistance and capacitance) and the contribution of delayed rectifier K+ channel currents to the membrane conducta...

متن کامل

A New Two Step Induction Protocol for Neural Differentiation of Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells

Background: In this study, we examined a new two step induction protocol for improving the differentiation of human umbilical cord blood-derived mesenchymal stem cells into neural progenitor cells. Materials and Methods: Human umbilical cord blood-derived mesenchymal stem cells were first cultured in Dulbecco’s modified eagle medium supplemented with 10% fetal bovine serum in a humidified incu...

متن کامل

سلول‌های بنیادین پالپ دندان‌های شیری انسان، تاریخچه و انواع روش‌های استخراج سلول

  Background and Aims: In the last decade, several studies have reported the isolation of stem cell population from different dental sources, while their mesenchymal nature is still controversial. The aim of this study was to introduce the isolating methods for stem cells from human dental pulp and to determine their mesenchymal nature before differentiation.   Material and methods: One of the ...

متن کامل

Isolation, Culture, and Characterization of Human Dental Pulp Mesenchymal Stem Cells

Introduction Based on previous researches, dental pulp stem cells (DPSCs) are easily accessible with limited morbidity after collection. Their embryonic origin, from neural crests, explains their multipotency. DPSCs are primarily derived from the pulp tissues of the teeth.Objective: This study was undertaken to isolate, culture, and characterize two different third molar and first premolar hum...

متن کامل

P 104: Effects of Human Neural Stem Cells in Cure Neuroinflammation of Traumatic Brain Injury

Traumatic brain injury (TBI) is defined as an external mechanical injury to the brain. Neuroinflammation plays a vital role in the pathophysiology of TBI. Microglia and astrocytes play a central role in the initiation and regulation of inflammation. Numerous pro-inflammatory mediators including cytokines, chemokines, reactive oxygen species (ROS) and nitric oxide (NO) released by microglia. In ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Korean journal of physiology & pharmacology : official journal of the Korean Physiological Society and the Korean Society of Pharmacology

دوره 12 4  شماره 

صفحات  -

تاریخ انتشار 2008